
Regression functionsRegression functions

Two of the most commonly used R functions for modelling are:

lm() for linear models.

glm() for generalised linear models.

We have entire stage 3 courses on the use of these commands.

Note for SAS users: PROC GLM is not the same as glm in R.



Student’s t-testStudent’s t-test



Student’s t-test in Student’s t-test in RR
t.test(y ~ x, data = dataset)

y: the continuous response variable. x: grouping variable with 2

levels. data: name of the dataframe containing the variables.

Suppose we want to test whether males and females have different

cholesterol levels. After visualising the data, we can perform the t-

test in R:

t.test(Cholesterol ~ Gender, data = patient.df)



Student’s t-test in Student’s t-test in RR

Note we could log-transform the cholesterol variable and make

inferences on the median.



Student’s t-test in Student’s t-test in RR



Student’s t-test in Student’s t-test in RR

t.test(Cholesterol ~ Gender, data = patient.df)

#R:   

#R:     Welch Two Sample t-test 

#R:   

#R:  data:  Cholesterol by Gender 

#R:  t = 6.4444, df = 16021, p-value = 1.194e-10 

#R:  alternative hypothesis: true difference in means is not equal to 0 

#R:  95 percent confidence interval: 

#R:   3.160295 5.923056 

#R:  sample estimates: 

#R:  mean in group Female   mean in group Male  

#R:              208.1786             203.6370

We have extremely strong evidence to suggest that the average

cholesterol level for females is between 3.2 and 5.9 units higher

than for males.



Analysis of Variance (ANOVA)Analysis of Variance (ANOVA)



ANOVA in ANOVA in RR

Generalises the t-test to more than 2 groups.

Null hypothesis: all group means are equal.

aov(y ~ x, data = dataset)

ExampleExample

Null hypothesis: The mean cholesterol levels are the same for all

three age groups.

my_aov = aov(Cholesterol ~ age_group, data = patient.df)



ANOVA in ANOVA in RR



ANOVA in ANOVA in RR

summary(my_aov)

#R:                 Df   Sum Sq Mean Sq F value Pr(>F)     

#R:  age_group       2  3280912 1640456   908.2 <2e-16 *** 

#R:  Residuals   16059 29007528    1806                    

#R:  --- 

#R:  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#R:  968 observations deleted due to missingness

We have extremely strong evidence that the average cholesterol

level in at least one age group is different to at least one other age

group.



Group meansGroup means

We can compute a summary table of the results easily with the

model.tables function:

model.tables(my_aov, "means")

#R:  Tables of means 

#R:  Grand mean 

#R:            

#R:  206.0492  

#R:   

#R:   age_group  

#R:      Under 35 36 to 60 Over 60 

#R:         185.9    209.7   221.2 

#R:  rep   4949.0   5991.0  5122.0

It would be interesting to know which pairs are statistically different

from one another.



Post-hoc multiple comparisonsPost-hoc multiple comparisons

We can calculate Tukey’s Honest Significant Difference intervals for

our post-hoc tests:

TukeyHSD(my_aov)

#R:    Tukey multiple comparisons of means 

#R:      95% family-wise confidence level 

#R:   

#R:  Fit: aov(formula = Cholesterol ~ age_group, data = patient.df) 

#R:   

#R:  $age_group 

#R:                        diff       lwr      upr p adj 

#R:  36 to 60-Under 35 23.87793 21.964387 25.79148     0 

#R:  Over 60-Under 35  35.38133 33.395712 37.36695     0 

#R:  Over 60-36 to 60  11.50340  9.607634 13.39917     0



Post-hoc multiple comparisonsPost-hoc multiple comparisons



Two-way ANOVATwo-way ANOVA



Two-way ANOVA in Two-way ANOVA in RR

The last ANOVA model was fitted using on categorical variable

(age_group), hence a one-way ANOVA.

If we fit a linear model using two categorical, explanatory

variables, we have a two-way ANOVA.

Example research questionExample research question

Do the differences in cholesterol levels differ between the various

age groups and genders?

my_2way_aov = aov(Cholesterol ~ Gender * age_group,  

                  data = patient.df)

Note that we are fitting an interaction using *.



Visualise the dataVisualise the data



Two-way ANOVA in Two-way ANOVA in RR

summary(my_2way_aov)

#R:                      Df   Sum Sq Mean Sq F value   Pr(>F)     

#R:  Gender               1    82506   82506   46.63 8.87e-12 *** 

#R:  age_group            2  3292611 1646305  930.48  < 2e-16 *** 

#R:  Gender:age_group     2   505233  252617  142.78  < 2e-16 *** 

#R:  Residuals        16056 28408089    1769                      

#R:  --- 

#R:  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#R:  968 observations deleted due to missingness

There is a significant 2-way interaction between gender and age

group, i.e. the magnitude of the difference in the mean cholesterol

levels between males and females is not constant across the age

groups.



Group meansGroup means

model.tables(my_2way_aov, "means")

#R:  Tables of means 

#R:  Grand mean 

#R:            

#R:  206.0492  

#R:   

#R:   Gender  

#R:      Female   Male 

#R:       208.2  203.6 

#R:  rep 8531.0 7531.0 

#R:   

#R:   age_group  

#R:      Under 35 36 to 60 Over 60 

#R:         185.8    209.7   221.3 

#R:  rep   4949.0   5991.0  5122.0 

#R:   

#R:   Gender:age_group  

#R:          age_group 

#R: Gender Under 35 36 to 60 Over 60



Post-hoc multiple comparisonsPost-hoc multiple comparisons

TukeyHSD(my_2way_aov)

#R:    Tukey multiple comparisons of means 

#R:      95% family-wise confidence level 

#R:   

#R:  Fit: aov(formula = Cholesterol ~ Gender * age_group, data = patient

#R:   

#R:  $Gender 

#R:                   diff       lwr       upr p adj 

#R:  Male-Female -4.541675 -5.845313 -3.238038     0 

#R:   

#R:  $age_group 

#R:                        diff      lwr      upr p adj 

#R:  36 to 60-Under 35 23.86896 21.97511 25.76281     0 

#R:  Over 60-Under 35  35.45641 33.49123 37.42159     0 

#R:  Over 60-36 to 60  11.58745  9.71120 13.46370     0 

#R:   

#R:  $`Gender:age_group` 

#R:                                        diff         lwr        upr 

#R: Male:Under 35-Female:Under 35 3.110853 -0.3060589 6.527764



Tests of independenceTests of independence



Table of countsTable of counts

ExampleExample

Does smoking depend on age group?

Two Categorical variables

Test for independence between rows and columns

smoke_tab = with(patient.df, table(Smoke, age_group)) 

smoke_tab

#R:       age_group 

#R:  Smoke Under 35 36 to 60 Over 60 

#R:    No       580     1611    2064 

#R:    Yes     1629     1943     799



Pearson’s Chi-squared testPearson’s Chi-squared test

We can use the chisq.test function in R to perform a Pearson’s

Chi-square test for independence:

chisq.test(smoke_tab)

#R:   

#R:     Pearson's Chi-squared test 

#R:   

#R:  data:  smoke_tab 

#R:  X-squared = 1086.7, df = 2, p-value < 2.2e-16

We have extremely strong evidence to suggest that smoking and

age group are not independent of one another.

Whether a patient smokes or not likely depends on their age

group.



AssumptionsAssumptions

Pearson’s Chi-squared tests have certain assumptions.

These assumptions are primarily to do with sample size.

R will give you a warning if these assumptions are not met:

#R:  Warning in chisq.test(my_table): Chi-squared approximation may be i

#R:   

#R:     Pearson's Chi-squared test 

#R:   

#R:  data:  my_table 

#R:  X-squared = 8.0496, df = 3, p-value = 0.045

If the sample size is too small for a Pearson’s Chi-square test, one

alternative is to use a Fisher’s exact test.



Fisher’s exact testFisher’s exact test

If we assume that our sample size was much smaller, and our

assumptions for a Chi-square test were not met, we could perform a

Fisher’s exact test using fisher.test:

no_na.df = subset(patient.df, !is.na(Smoke) & !is.na(age_group)) 

set.seed(3) 

smoke_tab = table(no_na.df[sample(seq_along(no_na.df$Age), 30), c("Smoke

fisher.test(smoke_tab)

#R:   

#R:     Fisher's Exact Test for Count Data 

#R:   

#R:  data:  smoke_tab 

#R:  p-value = 0.005496 

#R:  alternative hypothesis: two.sided



Linear regressionLinear regression



Simple linear regressionSimple linear regression

We can perform a simple linear regression in R using the lm

function, for example:

lm(y ~ x, data = dataset)

y: the continuous response variable. x: the continuous explanatory

variable. data: name of the dataframe containing the variables.

There can be more than one explanatory variable for a multiple

linear regression.

Since there is only one explanatory variable here, we refer to this

a simple linear regression.



Visualise the relationshipVisualise the relationship

geom_smooth(method = lm) gives you the fitted line of the simple

linear regression!



Visualise the relationship with a quadraticVisualise the relationship with a quadratic
termterm



Fit the regression modelFit the regression model

We saw that we will need a quadratic term in the model.

We can fit a quadratic term in R using I(x^2):

my_lm = lm(Cholesterol ~ Age + I(Age^2), data = patient.df)

We now need to check our assumption that the residuals are

normally distributed.



Check normality of the residualsCheck normality of the residuals

We can extract the residuals of the model with resid.

We can plot a Quantile-Quantile (QQ) plot with `qqnorm

qqnorm(resid(my_lm)) 

qqline(resid(my_lm), col = "red")



Check normality of the residualsCheck normality of the residuals

We can refit the model using log cholesterol as our response

variable instead:

my_lm = lm(log(Cholesterol) ~ Age + I(Age^2), data = patient.df)



Final regression modelFinal regression model

log cholesterol = 4.87 + 0.02 × Age + 0.0001 × Age2

summary(my_lm)

#R:   

#R:  Call: 

#R:  lm(formula = log(Cholesterol) ~ Age + I(Age^2), data = patient.df) 

#R:   

#R:  Residuals: 

#R:       Min       1Q   Median       3Q      Max  

#R:  -1.30527 -0.12697  0.00406  0.12949  1.31316  

#R:   

#R:  Coefficients: 

#R:                Estimate Std. Error t value Pr(>|t|)     

#R:  (Intercept)  4.868e+00  1.142e-02  426.44   <2e-16 *** 

#R:  Age          1.555e-02  4.855e-04   32.02   <2e-16 *** 

#R:  I(Age^2)    -1.161e-04  4.613e-06  -25.17   <2e-16 *** 

#R:  --- 

#R:  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#R:   

#R:  Residual standard error: 0.1998 on 16059 degrees of freedom 

#R: (968 observations deleted due to missingness)



SummarySummary

Model Function

Student’s t-test t.test

One-way ANOVA aov

Two-way ANOVA aov

Pearson’s Chi-square test chisq.test

Fisher’s exact test fisher.test

Linear regression lm


