
Designing graphsDesigning graphs

There are 2 important considerations when designing a graph:

1. It should have something to say.

Decide what information you want your graph to display.

2. It should be easy to interpret.

Simplicity is key!

Sufficiently large fonts, all axes labelled, clear legends, etc.

Data visualisation in Data visualisation in RR

The The ggplot2ggplot2 package package

R has several systems for making graphs, but ggplot2 is one of

the most elegant and versatile.

Install and load the ggplot2 package

install.packages("ggplot2")

library(ggplot2)

Creating a new plotCreating a new plot

We can initialize a new plot with the ggplot() function:

ggplot()

Creating a new plotCreating a new plot

ggplot()

Creating a new plotCreating a new plot

To define the coordinate system, we need to provide 3 pieces of

information:

1. Data set (lake.df)

2. Which variable to plot on the x axis (pH)

3. Which variable to plot on the y axis (Chlorophyll)

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll))

Creating a new plotCreating a new plot

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll))

Creating a scatterplotCreating a scatterplot

Now that we have initialized our canvas, we will tell R that we want

to add (using +) points (geom_point()) at the coordinates to create a

scatterplot.

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point()

Creating a scatterplotCreating a scatterplot

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point()

Changing the colour manuallyChanging the colour manually

We can change the colour of the points easily using the colour

argument:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(colour = "red")

Changing the colour manuallyChanging the colour manually

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(colour = "red")

Changing the colour automaticallyChanging the colour automatically

We can use a variable as the colour. When we do this, we need to

put it inside aes(). For example, we can colour the points by

calcium level:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium))

Changing the colour automaticallyChanging the colour automatically

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium))

Changing the shape manuallyChanging the shape manually

We can change the shape of the points easily using the shape

argument:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(shape = 1)

See for the various plotting symbols you can use.here

http://www.cookbook-r.com/Graphs/Shapes_and_line_types/

Changing the shape manuallyChanging the shape manually

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(shape = 1)

Changing the shape automaticallyChanging the shape automatically

We can change the shape of the points to represent the 3 different

calium levels:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(shape = Calcium))

Changing the shape automaticallyChanging the shape automatically

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(shape = Calcium))

Changing the point sizeChanging the point size

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(size = 3)

Combining shape, colour and sizeCombining shape, colour and size

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4)

Modify labelsModify labels

We can modify the labels of the plot by adding labs():

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4) +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 colour = "Calcium level")

Modify labelsModify labels

Modify the legend orderModify the legend order

R does not understand that “Medium” naturally comes after

“Low” and before “High”.

R coerces character vectors to factors, which uses alphabetical

ordering of the levels by default.

We have to manually change the lake.df$Calcium character

vector into a factor and specify the order of the levels ourselves:

Change Calcium variable to a factor and specify levels

lake.df$Calcium = factor(lake.df$Calcium,

 levels = c("Low", "Medium", "High"))

Check the levels

levels(lake.df$Calcium)

#R: [1] "Low" "Medium" "High"

Modify the legend orderModify the legend order

Modify components of the themeModify components of the theme

We can modify of this plot by adding

theme() to our code:

many other components

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4) +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 colour = "Calcium level") +

 theme(text = element_text(size = 14))

http://ggplot2.tidyverse.org/reference/theme.html

Modify components of the themeModify components of the theme

Modify the entire themeModify the entire theme

You may prefer a black and white figure, rather than colour. We can

change the entire theme to a black and white one easily by adding

theme_bw(), and using shape instead of colour to differentiate the

calcium levels:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(shape = Calcium), size = 3) +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 shape = "Calcium level") +

 theme_bw() +

 theme(text = element_text(size = 14))

Check out the complete list of available pre-defined themes .here

http://ggplot2.tidyverse.org/reference/ggtheme.html

Modify the entire themeModify the entire theme

Add a loess smoothAdd a loess smooth

We can easily add a smooth to a plot using geom_smooth(), which

defaults to a loess smooth (method = "loess") with a standard error

(se = TRUE) region.

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4) +

 geom_smooth() +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 colour = "Calcium level") +

 theme(text = element_text(size = 14))

Add a loess smoothAdd a loess smooth

Multiple linear smoothsMultiple linear smooths

Linear smooths can be produced with method = "lm" (instead of

"loess").

Can include smooths for each calcium level by adding

aes(colour = Calcium).

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4) +

 geom_smooth(method = "lm", aes(colour = Calcium)) +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 colour = "Calcium level") +

 theme(text = element_text(size = 14))

Multiple linear smoothsMultiple linear smooths

FacetingFaceting

A single plot can be separated into facets depending on the level of

a factor by adding geom_wrap:

ggplot(data = lake.df,

 mapping = aes(x = pH, y = Chlorophyll)) +

 geom_point(aes(colour = Calcium), size = 3, shape = 4) +

 geom_smooth(method = "lm", aes(colour = Calcium)) +

 facet_wrap(~Calcium, scales = "free_x") +

 labs(x = "Lake pH", y = "Chlorophyll (mg/L)",

 title = "Chlorophyll versus pH in lakes",

 colour = "Calcium level") +

 theme(text = element_text(size = 14))

FacetingFaceting

BoxplotsBoxplots

We need to have a discrete variable on the x axis, and a

continuous variable on the y axis.

The code is very similar, except we now use geom_boxplot,

instead of geom_point:

ggplot(data = patient.df,

 mapping = aes(x = Gender, y = Height)) +

 geom_boxplot()

BoxplotsBoxplots

Side-by-side boxplotsSide-by-side boxplots

We can use the fill (or colour) argument to create side-by-side

boxplots:

ggplot(data = patient.df,

 mapping = aes(x = Gender, y = Height)) +

 geom_boxplot(aes(fill = Ethnicity))

Side-by-side boxplotsSide-by-side boxplots

HistogramHistogram

A histogram (geom_histogram) only needs an x aesthetic.

You can change the binwidth with the binwidth argument.

ggplot(data = patient.df,

 mapping = aes(x = Height)) +

 geom_histogram(binwidth = .5)

HistogramHistogram

Histogram with Histogram with fillfill

We can use fill for histograms as well:

ggplot(data = patient.df,

 mapping = aes(x = Height)) +

 geom_histogram(aes(fill = Ethnicity), binwidth = .5)

Histogram with Histogram with fillfill

Faceted histogram with Faceted histogram with fillfill

ggplot(data = patient.df,

 mapping = aes(x = Height)) +

 geom_histogram(aes(fill = Ethnicity), binwidth = .5) +

 facet_wrap(~Gender, ncol = 1)

Faceted histogram with Faceted histogram with fillfill

Faceted density plot with Faceted density plot with fillfill

We can substitute geom_histogram() from the previous code with

geom_density() to create a density plot.

Transparency is controlled with the alpha argument

Remove missing values from Ethnicity

patient_2.df = subset(patient.df, !is.na(Ethnicity))

ggplot(data = patient_2.df,

 mapping = aes(x = Height)) +

 geom_density(aes(fill = Ethnicity), alpha = .4) +

 facet_wrap(~Gender, ncol = 1)

Faceted density plot with Faceted density plot with fillfill

BarplotBarplot

ggplot(data = patient.df,

 mapping = aes(x = age_group)) +

 geom_bar()

Faceted, side-by-side barplot of proportionsFaceted, side-by-side barplot of proportions

The proportions add to 1 within each age group

(group = age_group) and each facet.

ggplot(data = patient.df,

 mapping = aes(x = Smoke, y = ..prop.., group = age_group)) +

 geom_bar(aes(fill = age_group), position = "dodge") +

 facet_wrap(~Gender) +

 labs(y = "Proportion",

 fill = "Age group")

Faceted, side-by-side barplot of proportionsFaceted, side-by-side barplot of proportions

SummarySummary

Plot type Function

Scatterplot geom_point

Barplot geom_bar

Histogram geom_histogram

Boxplot geom_boxplot

The following can be added or changed in any plot:

Facets

Legends

Themes

Transparency

Labels and other options

