
The RStudio interfaceThe RStudio interface

Introduction to Introduction to RR

Using Using RR as a calculator as a calculator

1 + 2

#R: [1] 3

1 + 3^2

#R: [1] 10

log(15) - sqrt(3.4)

#R: [1] 0.8641413

pnorm(1.96)

#R: [1] 0.9750021

This is a comment and is not evaluated

Using Using RR as a calculator as a calculator

= is the assignment operator (you can also use <-).

For example, x = 2 means that we have assigned the value 2 to

the object x.

x = 2

y = 3

x^2 - 3 * y + 5

#R: [1] 0

Note that R is case-sensitive

X

#R: Error in eval(expr, envir, enclos): object 'X' not found

Different types of data objects in Different types of data objects in RR

R has 6 different data types:

character (alphanumeric; "hello world")

numeric (real or decimal; 3.14159)

integer (whole numbers; 256)

logical (TRUE or FALSE)

factor (numeric or alphanumeric, treated as categorical)

complex (numbers with imaginary components; 3i)

VectorsVectors

Use c() to combine multiple elements separated by comma’s.

A vector is a combination of multiple elements of the same data

type in 1 dimension (a one-dimensional array).

A character vector contains strings

c("hello", "world")

#R: [1] "hello" "world"

A numeric vector contains numbers

c(1, 2, 3, 4, 5, 6)

#R: [1] 1 2 3 4 5 6

We can easily produce sequences using ':'

1:6

#R: [1] 1 2 3 4 5 6

MatricesMatrices

Use matrix() to create a matrix in R.

A matrix is a combination of multiple elements of the same data

type in 2 dimensions (a 2-dimensional array).

Create a matrix with 2 rows

matrix(1:6, nrow = 2)

#R: [,1] [,2] [,3]

#R: [1,] 1 3 5

#R: [2,] 2 4 6

Create a matrix with 2 columns

matrix(1:6, ncol = 2)

#R: [,1] [,2]

#R: [1,] 1 4

#R: [2,] 2 5

#R: [3,] 3 6

DataframesDataframes

Use data.frame to create a dataframe in R.

A dataframe is a collection of multiple vectors (as different

columns) that can be different types.

my_characters = c("one", "two", "three")

my_numbers = 1:3

my_logicals = c(TRUE, FALSE, F)

data.frame(my_characters, my_numbers, my_logicals)

#R: my_characters my_numbers my_logicals

#R: 1 one 1 TRUE

#R: 2 two 2 FALSE

#R: 3 three 3 FALSE

Getting helpGetting help

Google!

“How to calculate the average in R?”

The search results tell you that the mean() function is useful.

Quick-R:

R-Bloggers:

Stack Overflow (SO):

https://www.statmethods.net/

https://www.r-bloggers.com/

https://stackoverflow.com/questions/tagged/r

https://www.statmethods.net/
https://www.r-bloggers.com/
https://stackoverflow.com/questions/tagged/r

Getting helpGetting help

?

For example, ?mean brings up the help file for the mean function.

It will tell you almost everything you need to know to use mean().

??

For example, ??mean searches for everything related to “mean” in

all the R packages installed on your computer.

RSiteSearch("mean")

Searches everything on CRAN (an online repository of R

packages). This requires interenet connection.

Basic principles for dataBasic principles for data
organisation in spreadsheetsorganisation in spreadsheets

Be consistentBe consistent

Whatever you do, do it consistently

Use consistent:

codes for categorical variables (not M, Male, and male).

codes for missing values (can use NA, -, or leave blank).

Do not use a numeric value (999).

variable names in all files (glucose_10wk, Gluc10wk)

subject identifiers (mouse153, M153, 153)

date formats (YYYY-MM-DD, YY/DD/MM)

Also, be careful about spaces within cells. A blank cell is different

to a cell with a space in, and “Male” is different to “ Male”.

Choose good names for thingsChoose good names for things

It is worth putting some time and thought into picking

good names for things

In general:

Do not use spaces in variable (column) names or file names.

Use underscores or hyphens instead (but not both).

Avoid special characters ($, @, %, #, &, (,), !, /, etc.).

Never use “final” in the file name.

Use short but meaningful names.

Other important guidelinesOther important guidelines

Put just one thing in a cell (i.e. separate lat, lon columns).

Make it a rectangle:

Rows corresponding to subjects (or observations).

Columns corresponding to variables.

Do not scatter tables around a worksheet.

Create a data dictionary.

No calculations in the raw data files.

Do not use font colour or highlighting as data.

Save the data in plain text files (i.e. a CSV).

Make backups (or use a version control system).

Other important guidelinesOther important guidelines

Do not overwrite original data files!

Reading data into Reading data into RR

Read and checkRead and check

Always set a working directory using setwd(). This can be a

directory where you store the data and/or output the results.

Use read.csv() to read a CSV file into R.

dim() returns the number of observations (rows) and variables

(columns).

head() and tail() return the first and last few rows of the data

set, respectively.

names() returns the names of the variables in the data set.

str() returns the structure of the dataset, e.g. dimension, column

names, type of data object, first few values of each variable.

CSV file containing patient informationCSV file containing patient information

The patient CSV file has 7 variables:

Patient.ID: Unique ID number.

Age: Age in years.

Gender: 0 = Female, 1 = Male.

Ethnicity: 1 = Caucasian, 2 = African, 3 = Other.

Weight: Weight in pounds.

Height: Height in inches.

Smoke: 1 = Yes, 2 = No.

Reading the data file into Reading the data file into RR

setwd("Data/")

patient.df = read.csv("Patient.csv")

head(patient.df)

#R: Patient.ID Age Gender Ethnicity Weight Height Smoke Cholesterol

#R: 1 3 21 Male 1 179.5 70.4 NA 268

#R: 2 4 32 Female 1 NA 63.9 NA 160

#R: 3 9 48 Female 1 149.7 61.8 2 236

#R: 4 10 35 Male 1 203.5 69.8 NA 225

#R: 5 11 48 Male 1 155.3 NA 2 260

#R: 6 19 44 Male 2 189.6 70.2 1 187

Check the variable namesCheck the variable names

Names of the variables

names(patient.df)

#R: [1] "Patient.ID" "Age" "Gender" "Ethnicity" "Weight

#R: [6] "Height" "Smoke" "Cholesterol"

Anything following the # symbol is treated as a comment, which

is ignored by R.

Writing comments is a very good habit to develop!

Check the structure of the data setCheck the structure of the data set

str(patient.df)

#R: 'data.frame': 17030 obs. of 8 variables:

#R: $ Patient.ID : int 3 4 9 10 11 19 34 44 45 48 ...

#R: $ Age : int 21 32 48 35 48 44 42 24 67 56 ...

#R: $ Gender : Factor w/ 2 levels "Female","Male": 2 1 1 2 2 2 1 1

#R: $ Ethnicity : int 1 1 1 1 1 2 2 1 2 1 ...

#R: $ Weight : num 180 NA 150 204 155 ...

#R: $ Height : num 70.4 63.9 61.8 69.8 NA 70.2 62.6 64.4 64.3 67.

#R: $ Smoke : int NA NA 2 NA 2 1 1 1 NA 2 ...

#R: $ Cholesterol: int 268 160 236 225 260 187 216 137 NA 156 ...

Note that the character vector Gender is automatically converted

to a factor vector.

Check the structure of the data setCheck the structure of the data set

We can set the stringsAsFactors argument to FALSE, so character

strings are not converted to factors.

patient.df = read.csv("Patient.csv", stringsAsFactors = FALSE)

str(patient.df)

#R: 'data.frame': 17030 obs. of 8 variables:

#R: $ Patient.ID : int 3 4 9 10 11 19 34 44 45 48 ...

#R: $ Age : int 21 32 48 35 48 44 42 24 67 56 ...

#R: $ Gender : chr "Male" "Female" "Female" "Male" ...

#R: $ Ethnicity : int 1 1 1 1 1 2 2 1 2 1 ...

#R: $ Weight : num 180 NA 150 204 155 ...

#R: $ Height : num 70.4 63.9 61.8 69.8 NA 70.2 62.6 64.4 64.3 67.

#R: $ Smoke : int NA NA 2 NA 2 1 1 1 NA 2 ...

#R: $ Cholesterol: int 268 160 236 225 260 187 216 137 NA 156 ...

Descriptive statisticsDescriptive statistics

Calculating averagesCalculating averages

Calculate the average height of patients:

mean(Height)

#R: Error in mean(Height): object 'Height' not found

You must tell R that Height is a variable (column) within the

patient.df data frame:

mean(patient.df$Height)

#R: [1] NA

There are missing values is the Height variable that R does not

know what to do with.

Calculating averages with missing valuesCalculating averages with missing values

We can tell R to remove the missing values before calculating the

average height:

mean(patient.df$Height, na.rm = TRUE)

#R: [1] 65.43787

Table of countsTable of counts

One-way table of counts

table(patient.df$Gender)

#R:

#R: Female Male

#R: 9077 7953

Same table of counts using 'with'

with(patient.df, table(Gender))

#R: Gender

#R: Female Male

#R: 9077 7953

Table of proportionsTable of proportions

Table of proportions for the gender variable

prop.table(table(patient.df$Gender))

#R:

#R: Female Male

#R: 0.5330006 0.4669994

Convert to % and round to 1dp

round(prop.table(table(patient.df$Gender)) * 100, 1)

#R:

#R: Female Male

#R: 53.3 46.7

Two-way frequency tablesTwo-way frequency tables

gender_eth_table = with(patient.df, table(Gender, Ethnicity))

gender_eth_table

#R: Ethnicity

#R: Gender 1 2 3

#R: Female 6114 2687 274

#R: Male 5498 2173 279

Two-way frequency tables (proportions)Two-way frequency tables (proportions)

We can calculate proportions for each row (margin = 1) or for each

column (margin = 2)

Calculate proportions across gender for each ethnicity

prop.table(gender_eth_table, margin = 2)

#R: Ethnicity

#R: Gender 1 2 3

#R: Female 0.5265243 0.5528807 0.4954792

#R: Male 0.4734757 0.4471193 0.5045208

SummarySummary

Quick introduction to R and RStudio

Spreadsheet guidelines

Getting data into R

Calculate averages

Frequency tables

