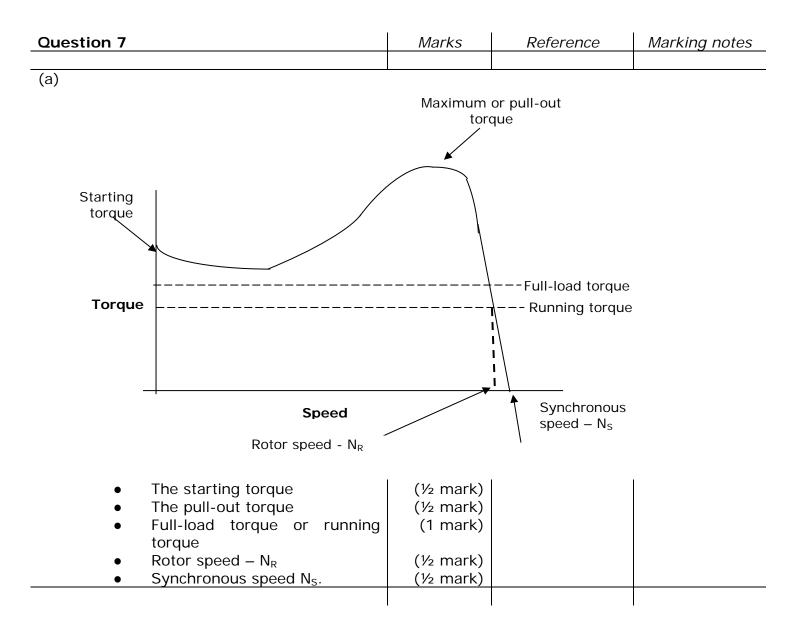
FINAL - ET 60 - Electrician Theory Examination Marking Schedule

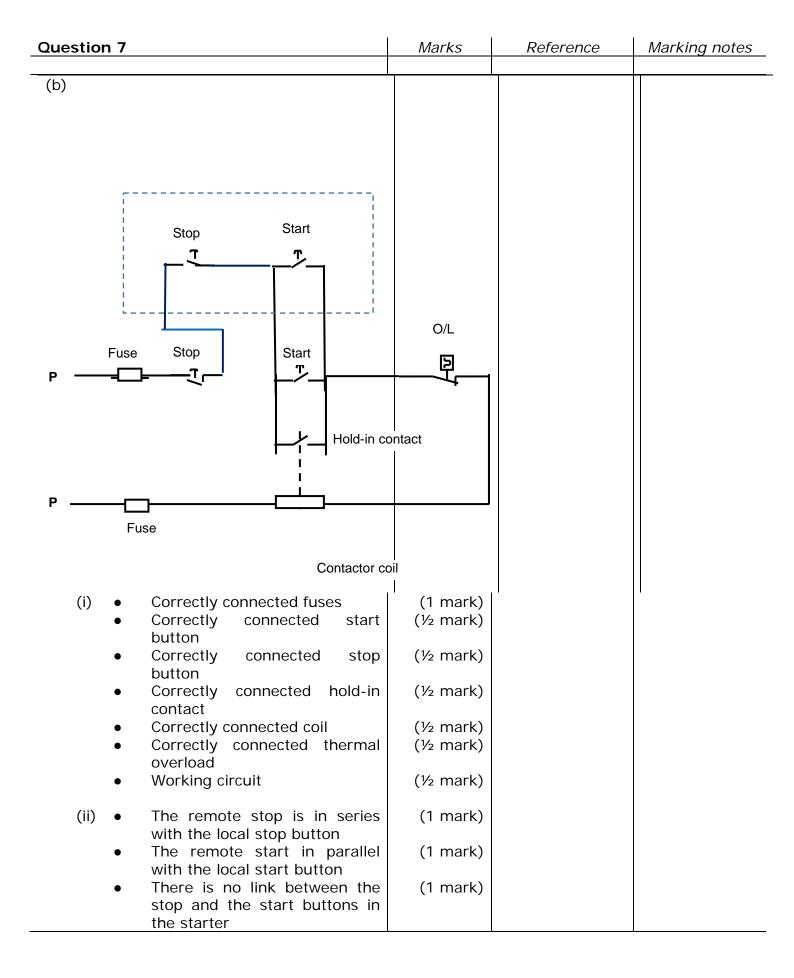
Notes: 1. (1 mark) means that the preceding statement/answer earns 1 mark.

- 2. This schedule sets out the accepted answers to the examination questions. A marker can exercise their discretion and decide on the overall accuracy of any answer that is presented in the candidate's own words.
- Symbols and terms alternatives
 Power W or P
 Voltage V or E or U
 Phase Active

Question 1	Reference Marking notes Marks
(a) (i) An inverse time-current character	istic (1 mark)
(ii) An earth fault-loop impedance tes	t. (1 mark)
(b) The contacts in the isolating switc failed to open.	h have (2 marks) Award 1 mark if candidate states "faulty isolating switch".
(c) $I = \underline{P}$	(½ mark)
$= \frac{6000}{230}$	(½ mark)
= 26.01 A.	(1 mark)
 (d) Any ONE of: Under fault conditions, it prevent touch voltages rising to data levels. To ensure sufficient fault current operate the protective device. 	ngerous
 (e) Any ONE of: To confirm that the electrical profor the final subcircuit will operate the required time. To confirm that the electrical profall other final subcircuits supplies the main switchboard will operate the required time. 	e within otection ed from
levels.To ensure sufficient fault current	ngerous

Question 1	Reference Marks	Marking notes
operate the protective device.		
(g) Battery maximum current = $(12 - 9)$ 0.2	(½ mark)	
= 15 A	(½ mark)	
Total number of lights	(½ mark)	
$= \frac{15}{1.5}$		
= 10	(½ mark)	
 (h) (i) This is the value of fault current that cuts off (operates) the fuse that is less than the prospective short-circuit current. 	(1 mark)	
High Fault Current Clearance		
Fault current Fault Fa		
(ii) This is the time it takes to interrupt the flow of current and extinguish the arc.	(1 mark)	
(i) To provide short-circuit fault protection to both the final subcircuit and the motor.	(2 marks)	
 (j) Any ONE of: Fire risk (sodium + moisture produces hydrogen) Risk of chemical burns (sodium + water produces sodium hydroxide (caustic soda)) 	(2 marks)	


Question 2	Reference Marks	Marking notes
(a) Sec V_{PH} = $Pri \underline{V_L}$ N_P	(½ mark)	
= <u>33000</u> 137.5	(½ mark)	
= 240 V	(1 mark)	
(b) Sec. VL = VPh x $\sqrt{3}$	(½ mark)	
$=$ 240 x $\sqrt{3}$	(½ mark)	
= 415.68V	(1 mark)	
(c) Pri. I _L = $\frac{VA}{\sqrt{3} \times Pri. V_L}$	(½ mark)	
$= \frac{300000}{\sqrt{3} \times 33000}$	(½ mark)	
= 5.25A	(1 mark)	
(d) Sec. I _L = $\frac{VA}{\sqrt{3}} \times \text{Sec. V}_{L}$	(½ mark)	
$= \frac{300000}{\sqrt{3 \times 415.68}}$	(½ mark)	
= 416.7 A	(1 mark)	
(e) (i) Yes	(1 mark)	
(ii) Because of the current flo impedance of the winding		


Question 3		Reference Marks	Marking notes
(a)	The description must show:		
	 Opening the isolator or removing the fuses. 	(½ mark)	
	 Doing a voltage test at the load side of the isolator (or the supply side of the contactor). 	(½ mark)	
	 Using the prove-test-prove method to confirm isolation has occurred. 	(1 mark)	
	 Locking the isolator open. 	(½ mark)	
	• Attaching a danger tag to the isolator.	(½ mark)	
(b)	Earth continuity test.	(½ mark)	
	Insulation resistance test.	(½ mark)	
	Ensure the circuit is still isolated by using the prove-test-prove method.	(1 mark)	
(d)	Use an ohmmeter	(1 mark)	
	 Test between the frame of the hot water cylinder and earth reference (other than a bonded extraneous earth path) that is separate from the hot water cylinder final subcircuit. 	(2 marks)	
(e)	 Any TWO of: Is the current rating of final subcircuit cable consistent with the increase in load. Are the HRC fuses correctly rated for the final subcircuit. Is the current rating of the isolator consistent with the increase in load. Is the current rating of the contactor consistent with the increase in load. 	(2 marks)	

Question 4		Reference Marks	Marking notes
(a) (i) Output waveform	Single-phase half-wave rectifier	(1 mark)	
Ripple frequency	F (50 Hz)	(½ mark)	
(ii) Output waveform	Centre-tapped full-wave rectifier	(1 mark)	
Ripple frequency	2 x f (100 Hz)	(½ mark)	
(iii) Output waveform	Single-phase full-wave bridge rectifier	(1 mark)	
Ripple frequency	2 x f (100 Hz)	(½ mark)	
(b) (i)	To provide a stable, constant voltage supply to the connected load.	(1 mark)	
(ii)	A Zener diode is designed to carry significant reverse current but a normal rectifier diode cannot.	(1 mark)	
(iii)	 Any ONE of: It limits the current through the Zener diode. It drops the supply voltage to the voltage rating of the Zenor diode. 	(2 marks)	
(c) Any • •	ONE of: The ripple amplitude is less The ripple frequency is greater.	(1 mark)	
(d) Any • •	ONE of: Inductor Capacitor Resistor	(½ mark)	

Question 5		Reference Marks	Marking notes
(a) Weldir kW =	ng load = kVA x pf	(½ mark)	
=		(½ mark)	
=	= 8400 watts	(1 mark)	
kW _T =	= 9 kW + 15 kW + 8.4 kW	(½ mark)	
=	= 32.4 kW	(1 mark)	
(b) kvA =	$= \sqrt{kW^2 + kVAr^2}$	(½ mark)	
(0) KVA -	$(22, 4)^2 = 22, 4)^2$	(½ mark)	
=	= 43.22 kVA	(1 mark)	
(c) pf =	= <u>kW</u> kVA	(½ mark)	
=		(½ mark)	
=	43.22 = 0.75	(1 mark)	
(d) P =	$= \sqrt{3} \times V_{L} \times I_{L} \times pf$	(½ mark)	
I _L =	<u></u>	(½ mark)	
=	√3 x V _L x pf = <u>32.4</u> √3 x 400 x 0.75	(½ mark)	
=		(1 mark)	

Que	Question 6		Reference Marks	Marking notes
(a)	 Any TWO of: The MCB may be destroyed. The MCB may not clear the fault before damage occurs to the installation. Unwanted operation of upstream devices A fire could be initiated 		(2 marks)	
(b)	``	e rewireable fuses are rated for ximum fault currents of 1 kA	(1 mark)	
	(ii) Any • •	y TWO of: MCBs HRC fuses RCBOs	(1 mark)	
(c)	63A	This is maximum continuous current.	(½ mark) (½ mark)	
	440V	the fuse is designed to carry. This maximum open-circuit voltage.	(½ mark)	
	AC40	the fuse is designed to withstand. 40,000A is the maximum prospective short circuit current. The fuse can safely interrupt.	(½ mark) (½ mark) (½ mark)	
(d)) Only the protective device protecting that final subcircuit operates.		(2 marks)	
(e)	 Any ONE of: The breaking capacity of the MCBs is too low for the PSSC of the installation. The PSSC level of the installation has increased. 		(1 mark)	

Question 8	Reference Marks	Marking notes	
(a) E N L I Tripping Device Test button Sensing cil/toroid Class I equipment load		No marks can be awarded for part (a) if: • There is no earth connection • The test circuit is connected on the supply side of the main contacts	
 Correctly connected test circuit and resistance Correctly connected sensing coil/toroid Correctly connected phase, neutral and earth. Correctly connected tripping circuit 	(1 mark) (1 mark) (1 mark) (1 mark)		
(b) (i) 10 milliamps.	(½ mark)		
(ii) 300 milliamps.	(½ mark)		
(c) (i) • Type A.	(½ mark)		
 (ii) Tripping is ensured for residual sinusoidal alternating currents. Tripping is ensured for residual pulsating direct currents. 	(1 mark) (1 mark)		
(d) Because Type AC RCDs do not have a residual pulsating d.c. function	(½ mark)		

Question 8		Reference Marks	Marking notes
(e) () Yes	(½ mark)	
	The RCD detects the imbalance regardless the polarity of the supply.	of (½ mark)	
(i) Yes	(½ mark)	
	The RCD would detect and imbalance betwee the phase and neutral currents.	en (½ mark)	

Question 9		Reference Marks	Marking notes
(a) pf coct		(16 mark)	
(a) pf = $\cos \Phi$		(½ mark)	
$= \cos 35^{\circ}$			
= 0.8191 la	ag	(½ mark)	
(b) Input power =	Output power Efficiency	(½ mark)	
=	<u>10000</u> 0.815	(½ mark)	
=	12270 W	(1 mark)	
(c) $I_L = \frac{P_{Input}}{\sqrt{3} \times V_L}$	nf	(½ mark)	
= <u>12270</u>) x 0.8191	(½ mark)	
= 21.62A	7 × 0.0171	(1 mark)	
(d) (i) N = <u>60f</u>		(½ mark)	
P			
= <u>60 x</u>	<u>x 60</u> 2	(½ mark)	
= 180	0 rpm	(½ mark)	
Slip speed	= N x slip	(½ mark)	
	= 1800 x 4%	(½ mark)	
	= 72 rpm	(½ mark)	
(ii) Rotor speed	= N – slip speed	(½ mark)	
	1000 70	(½ mark)	
	1700	(1 mark)	
	= 1728 rpm		